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An electric motor driven by the electromechanical system of the Internet of Things is attractive because of its long life capability of
the propulsion system. In this paper, the application of collaborative design and manufacturing in the design automation of IOT
electromechanical system is reviewed, and the application of collaborative design and manufacturing in robots, a typical IOT
electromechanical system, is described in detail. In this paper, we explain five aspects including the construction of a multiangle
unified modeling method for the electromechanical system of the Internet of Things; the constraint processing mechanism for the
optimization problem of the electromechanical system of the Internet of Things; the constraint multiobjective optimization
methods; design methods that integrate constraint multipurpose evolutionary algorithms and knowledge extraction; and design
automation of visual perception systems for electromechanical systems based on the Internet of Things and deep neural networks.
The research shows that under the control of a conventional radial basis function neural network controller and the control of a
radial basis function neural network controller based on the electromechanical system of the Internet of Things, the system will be
affected to a certain extent when there is interference. Under the control of a traditional RBF neural network controller, the system
requires 0.18 seconds to restore stability. When using the RBF neural network controller based on the electromechanical system of
the Internet of Things, the system returns to a stable state after 0.09s, and the peak time is reduced by 59% compared with the

conventional RBF neural network controller.

1. Introduction

With Internet of Things technology, neural network to-
pologies and parameters can be automatically optimized for
different application scenarios, generating innovative neural
network structures to increase the processing power and
intelligent level of recognition modules. It can be improved
systematically and continuously—Internet of Things elec-
tromechanical systems.

Internet of Things products are mainly in the form of
embedded devices equipped with arm chips, and there is a
lot of progress research. Liu and Srinivasa et al. proposed a
general architecture of coevolution, which is used for the
interaction and mutual adaptation of subcomponents in the
evolutionary design system, and designed a rule-based
control system to simulate autonomous robots using the
coevolution method [1, 2]. In view of how to select

collaborators for evaluation in the process of coevolution,
Van Dijk et al. provided experimental verification and
analysis of various cooperative mechanisms in coevolution
methods and put forward some basic suggestions on how to
select mechanisms suitable for specific problems [3]. Aiming
at the single domain design optimization method cannot
solve the design optimization problem of electromechanical
systems composed of multidomain subsystems. Teixeira
et al. proposed a unified electromechanical system modeling
and evolutionary synthesis method based on brain limb
coevolution. A bond graph was used to describe the con-
tinuous controller and controlled object of vehicle sus-
pension system, and a brain limb coevolution algorithm was
used to automatically design a vehicle suspension system [4].
Yang proposed a design automation method named hbggp
for the design optimization of hybrid dynamic systems with
discrete and continuous systems. Aiming at the problem of
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dynamic modeling and parameter evaluation of a 7-DOF
electromechanical system, Zidan developed a mechanism by
using a genetic algorithm, which can estimate and update the
model parameters of the electromechanical system under
noise and unknown operation conditions [5, 6]. In order to
obtain a high-performance electromechanical system,
Ribeiro Palau et al. used NSGA-II to optimize the geometric
arm length of the electromechanical system and the selection
of motor and gearbox based on robot kinematics and dy-
namics. Experimental results show that the algorithm can
optimize the mechanical and electrical system with lighter
weight and higher operability than UR5 [7].

Christoph et al. used a hybrid bond graph to describe the
hybrid dynamic system with discrete and continuous events,
adopted a single-step forward controller to control the DC-
DC converter, searched the open design space of the system
combined with the Internet of Things, and automatically
generated the DC-DC converter circuit that meets the
predefined design specifications and whose topology and
parameters are optimized at the same time [8]. Riaz et al.
proposed an evolutionary design method of the discrete
controller in a hybrid electromechanical system, which uses
a finite-state machine to represent the discrete logic con-
troller, a hybrid bond graph to represent the hybrid con-
trolled object, and combined with genetic algorithm to
coevolutionary design the controller and controlled object of
the hybrid electromechanical system [9]. Mimee et al. uses
the cuckoo search algorithm to tune the parameters of a
fractional order fuzzy PID controller to solve the trajectory
tracking problem of a two-link manipulator [10]. Kalantar
Zadeh et al. compared the design of a discrete controller of a
two-tank system by using a finite-state machine controller
and a discrete controller represented by a single-step for-
ward controller under the condition that the structure of the
controlled object is fixed and variable, expounds the ad-
vantages and disadvantages of the two controllers, and
verifies the effectiveness of the evolutionary design method
[11]. Although the above research has made a lot of
achievements in the design automation of the electrome-
chanical system of the Internet of Things, due to the
complexity of the electromechanical system, the above re-
search is still insufficient in constraint processing, multi-
index optimization, computational efficiency, knowledge
application, and so on, and there is still a significant gap
from the extensive industrial application.

In this paper, the application of collaborative design and
manufacturing in the design automation of IOT electro-
mechanical systems is reviewed, and the application of
collaborative design and manufacturing in robots, a typical
IOT electromechanical system, is described in detail from
three aspects: robot body, robot controller, and robot
structure and controller collaborative design optimization
[12]. Aiming at the problems of the lack of unified modeling
method in the design and optimization process of the
electromechanical system of the Internet of Things, the high
cost of the evaluation of the optimization problem of the
electromechanical system of the Internet of Things, and the
problems of collaborative design and manufacturing used in
the intelligent, networked, and green direction of the
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electromechanical system of the Internet of Things, this
paper constructs the unified modeling method of the elec-
tromechanical system of the Internet of Things and the
optimization problem of the electromechanical system of the
Internet of Things. In this paper, the constraint processing
mechanism, the constraint multiobjective optimization
method, the design method of integrating constraint mul-
tiobjective evolutionary algorithm and knowledge extrac-
tion, and the design automation of electromechanical
systems’ visual perception system based on Internet of
Things and deep neural network are described.

2. Collaborative Design and Manufacturing
Technology of Internet of Things and
Electromechanical System

2.1. Electromechanical Composition and Configuration of
Internet  of ‘Things. The collaborative design and
manufacturing of mechanical and electrical products of the
Internet of Things is mainly composed of batteries, fuel cells,
solar cells, and other power supplies and propulsion motors
[13]. Hybrid power architecture is formed by combining
multiple power sources for a propulsion application. The
hybrid power system is controlled by the power manage-
ment system. In most fuel cell and battery hybrid config-
urations, the fuel cell system operates as the main power
supply due to the high energy density, while the battery is
considered the auxiliary power supply due to the high power
density. When the load power is high, both power source
provide propulsion power, while in the low power demand
stage, the fuel cell provides propulsion power and charges
the battery at the same time [14]. The hybrid electrical
construction of proton exchange membrane fuel cell and
battery drive mainly consists of a proton exchange mem-
brane fuel cell system, battery, DC/DC boost converter,
bidirectional converter, and permanent magnet brushless
DC motor with three-phase inverter. [15]. The proton ex-
change membrane fuel cell system is used as primary power
supply and lithium-ion battery as secondary power supply
[16]. DC/DC unidirectional converter improves the output
voltage of polymer exchange membrane fuel cell and reg-
ulates the DC bus voltage. The bidirectional converter
changes the power flow of the battery to charge or discharge
while adjusting the DC bus voltage [17]. The permanent
magnet brushless DC motor can push the aircraft forward in
all flight conditions [18]. The three-phase power inverter
converts DC bus current into AC current signal and con-
nects it to the permanent magnet brushless DC motor [19].

2.2. Collaborative Design and Manufacturing of Electrome-
chanical System. An electromechanical system is a kind of
complex system composed of mechanical, electronic,
pneumatic, hydraulic, and control systems. It combines the
advantages of mechanical, electronic, computer, and in-
formation technology and integrates multiple subsystems. It
covers a wide range and has penetrated into all aspects of our
lives [20]. Other typical electromechanical systems include
industrial robots, UAVs, and electromechanical system
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equipment [21]. Among them, electromechanical system
equipment is the basis of manufacturing industry, which has
been widely used in industrial manufacturing, agricultural
production, national defense science and technology, and
other fields to help people complete repetitive, heavy, and
dangerous work [22]. DDS is a communication specification
issued by OMG (Object Management Group) to realize data
interaction between different platforms. It can provide a
variety of quality of service strategies to solve the problem of
service bottleneck. The DDS distributed simulation platform
consists of seven parts: simulation operation management
environment, simulation main engine, simulation sub-
engine, CO simulation interface, simulation soft bus, sim-
ulation auxiliary service, and data storage and recording. The
platform defines clock flow, data flow, and control flow to
ensure the synchronization before and after distributed
simulation [23].

With the continuous improvement of China’s
manufacturing capacity, the key to improve the design level
of China’s electromechanical system is to put forward a set of
design automation methods that can systematically and
continuously optimize the electromechanical system. Me-
chanical and electrical system design is a type of design
problem that differs from traditional machines that require
the integration of multiple types of energy conversion op-
erations, and the system may include continuous or discrete
controllers. Therefore, the research of mechanical and
electrical system design automation (MDA) needs to con-
sider the automatic parallel design of controllers and con-
trolled objects of multifunctional physical systems [24]. Due
to the strong coupling and complexity of such systems, the
design of electromechanical systems is often difficult. Tra-
ditional design methods usually rely on the long-term ex-
perience accumulation and exploration of engineers, which
not only needs long design cycle and frequent modification
but also cannot guarantee that the mechanical and electrical
system performance designed is globally optimal [25].
Mechanical and electrical system design automation refers
to the use of intelligent optimization design method for
mechanical and electrical system man-machine collabora-
tive automatic design [26]. Specifically, under the digital
twin architecture, it effectively supports designers to carry
out systematic electromechanical system  design
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optimization with the help of the powerful ability of
knowledge processing and model optimization of artificial
intelligence technologies such as collaborative design and
manufacturing and evolutionary computing [27]. Design
automation can provide powerful human-computer inter-
action function, which makes it possible for human-com-
puter cooperation to enhance intelligence. In addition,
mechanical and electrical system design automation is also
an important branch of knowledge automation. Knowledge
automation is a disruptive technology to drive the future
economic development. Through data connection and
driving, the software systems can work together to realize the
whole process of a product or system from design to
manufacturing from top to bottom [28]. In this process,
expert systems and knowledge base are integrated into the
processing process of each software system, and a large
amount of data generated in the processing process of each
software system is extracted and mined to form a corre-
sponding database. Such continuous iteration can make the
whole design manufacturing process of the product or
system more efficient, and hence the resulting product or
system is more efficient and intelligent. Therefore, it is a very
meaningful work to carry out the design automation re-
search and application of electromechanical system under
the knowledge automation system.

2.3. Index System Model of Internet of Things Collaborative
Design. It is very important for simulation partition to build
an index system that integrates topological attributes and
simulation characteristics, and it is the basis for determining
the edge weight. Topological attributes include centrality and
clustering coefficient, and simulation attributes include
coupling, real-time, and energy activity. Based on the
complex network theory, the subsystem or simulation
component is abstracted as node set V, and the pressure
pipeline connection or signal feedback connection is ab-
stracted as edge set E, so the undirected graph network of
simulation is g = (V,e). The node degree value in the
network refers to the number of connections between the
node and other nodes. Based on the second-order tensor, it
represents the connection relationship of each node in the
simulation network, as shown in formula (1):

(1)
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That is, the number relationship between node i and
other m simulation nodes can measure the importance of
simulation nodes. The clustering coeflicient represents
the compactness of nodes in the network. In the elec-
tromechanical system simulation, the clustering

— (2)
s’ Zi:I Zj:l W;;

coefficient refers to the total number of simulation
connections I (including hydraulic connections and
control signal connections) between K nodes, which is
higher than the total number of possible connection
edges.
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tfeedback loop, and when the loop device is divided, it is easy
to cause the AMESim solution not to converge. The essence N
of AMESim simulation is to assign a group of mathematical In U, = ay +a,du = dt + Z biXu +¢,. (13)

formulas to each simulation component and add appro-
priate coeflicients to these formulas, which are solved by the
AMESim solver. The coupling index of component sub-
models can be directly represented by the external variables
of each model. The external variables represent the input-
output relationship between submodels, that is, the coupling
degree between one set of equations and the next set of
equations:

v o1 (Zyxyy + Cl)(Zaxy + Cz) )
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The convolution kernel of deep separation convolution
layer is a single channel, and the channel of output char-
acteristic is the number of convolution kernels:

S=pimX
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N
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i=1

The formula is an empirical formula obtained from
several partition experiments, where n is the number of
external variables, and the result represents the weight of
IOT. In the simulation task partition, the amount of data
interaction at the high coupling devices will cause high delay
of data reading and writing and interaction, which will
increase the communication time of simulation. At this time,
the partition will be counterproductive. Therefore, when the
number of external variables exceeds 8, the node weight is
assigned to 1, and multiple components meet the require-
ments within the coupling range, the components with fewer
external variables are preferred.

i=1

In the process of CO simulation, GT real-time perfor-
mance index t is defined as the sum of operation time x,
transmission time u, response time w, and communication
time of CO simulation, namely,

ISEGNGT]|

oT (14)
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where it is the transmission time of internal and external
excitation, f is the operation time, and 0t is the response
time. Since the model before distributed simulation is a
whole, there is no need to consider the communication
overhead, and then t can be calculated by the CPU time
module of the simulation environment. In the simulation
task partition, the real-time index can determine the
granularity of simulation partition, that is, the system with
low real-time performance is not partitioned, and the system
with high real-time performance needs to be partitioned.
The reason is that the lower the real-time performance, the
slower the solution, and the greater the communication
overhead in DDS after partition. The weight of real-time
measurement value can be calculated using the entropy
weight method, and its expression is as follows (17), and (18):

SEGNGT
VOEZI—Q, (17)
|ISEGUGT)|
s —kx, + X
Y, = P1= K% . (18)
x—p,-k(l-x,)+Y

The original feature x is normalized by the BN layer
before convolution. The formula of BN layer is as follows:
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P is the power value of a submodel, and its absolute value
can be used to measure the energy change degree of
AMESim submodel. The energy activity index function in
AMESim is defined as the ratio of the energy activity of a
submodel to that of the whole system.

Loss = ISEGNGT| (20)
~ |SEGUGT|
- 1
Dicey; = % + RVD # VOE, (21)
pr—pitk
d, =£2_ 17 % 22
Jaccardy, K (22)

These values can be calculated by AMESim. When the
simulation task is divided, the high energy activity index
cannot be divided, and the weight of energy activity mea-
surement value can be calculated using the entropy weight
method.

3. KeyTechnologies of Collaborative Design and
Manufacturing of Mechanical and Electrical
Products Based on Internet of Things

3.1. Content. In this paper, the application of collaborative
design and manufacturing in the design automation of IOT
electromechanical systems is reviewed, and the application
of collaborative design and manufacturing in robots, a
typical IOT electromechanical system, is described in detail
from three aspects: robot body, robot controller, and robot
structure and controller collaborative design optimization.
Aiming at the problems of the lack of unified modeling
method in the design and optimization process of the
electromechanical system of the Internet of Things, the high
cost of the evaluation of the optimization problem of the
electromechanical system of the Internet of Things, and the
problems of collaborative design and manufacturing used in
the intelligent, networked, and green direction of the elec-
tromechanical system of the Internet of Things, this paper
constructs the unified modeling method of the electrome-
chanical system of the Internet of Things and the optimi-
zation problem of the electromechanical system of the
Internet of Things. This article describes constraint pro-
cessing mechanisms, constraint multiobjective optimization
methods, design methods that integrate constraint multi-
objective evolutionary algorithms and knowledge extraction,
and design automation of electromechanical systems’ visual
perception systems based on the Internet of Things and deep
neural networks.

3.2. Steps and Simulation Methods. The electric propulsion
system described in this study mainly uses a commercial
electromechanical system of Internet of Things and lithium-
ion battery. For the propulsion application of mechanical
and electrical products, considering its performance or

geometric performance, it is necessary to optimize the
components of electric propulsion system. In mechanical
and electrical products, the throttle command sent by the
operator is directly sent to the brushless DC motor con-
troller. In the electromechanical products powered by the
electromechanical system of Internet of Things, the appli-
cation of electromechanical products needs to develop
motor control technology. In order to obtain greater pro-
pulsion characteristics, it is necessary to improve the control
analysis related to throttle command and motor parameters
such as torque and speed. The adaptive controller developed
for gas supply system control is only validated in a pure
digital simulation environment. Under the existing pro-
cessor technology, the real-time engineering implementa-
tion of ANFIS controller will be a challenging task. Due to
the effects of backpropagation and error minimization al-
gorithms, the ANFIS controller slows down. Therefore, real-
time applications require high-performance, high-speed
microcontrollers in the loop simulation hardware for ANFIS
control structures.

The hybrid electric propulsion system of electrome-
chanical products is modeled and simulated in MATLAB.
The net power output of the electromechanical system of the
Internet of Things is compared with the optimal compressor
power and constant compressor power. The results show
that the optimized compressor power configuration can save
241% energy than the constant compressor power config-
uration. At the same time, the IOT electromechanical system
controller optimizes the energy utilization of the IOT
electromechanical system.

Design automation of visual perception systems for
electromechanical systems based on the Internet of Things
and deep neural networks. With the advent of intelligent era,
the requirement of intelligent level of electromechanical
system of Internet of Things is higher and higher, especially a
large number of intelligent electromechanical systems
contain visual processing modules. Therefore, one of the key
contents to realize the design automation of the electro-
mechanical system of the Internet of Things in the future will
be the design automation of its visual system. Specifically,
according to different application scenarios, the design
automation method can automatically build the best per-
formance visual processing model to realize the visual
perception function of the electromechanical system of the
Internet of Things.

4. Key Technology Analysis of Collaborative
Design and Manufacturing of Mechanical and
Electrical Products Based on
Internet of Things

As shown in Figure 1, the electromechanical system of the
Internet of Things usually includes systems in multiple fields,
and there is usually mutual coupling between subsystems in
different fields, so there is a lack of an effective unified
modeling method for the electromechanical system. The
optimization problem of the electromechanical system of the
Internet of Things is usually a multiobjective optimization
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The electromechanical system of the IoT
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FIGURE 1: The electromechanical system of the IoT.

problem with conflicting constraints. At present, the re-
search results in this field are relatively few.

In order to verify the project based on the electrome-
chanical system of the Internet of Things, we use the
Guanglianda Xieju cloud platform as the data collaborative
management platform of the project, reasonably allocate the
permissions and roles of each participant, and establish
internal data sharing in the cloud for the cooperation process
of each participant in the BIM implementation process. For
the effect of RBF neural network controller on the stability
and response speed of loading system, the interference signal
is added after the system is running, and the results are
shown in Table 1.

As shown in Table 2, the objectives and constraints in the
electromechanical system of the Internet of Things may be
computationally expensive, and the design variables include
both continuous and discrete variables, which makes the
solving problem very complex. How to design an efficient
constraint processing mechanism, a hybrid solution
mechanism of discrete and continuous variables, an efficient
constrained multiobjective evolutionary algorithm, and a
constrained multiobjective evolutionary algorithm based on
alternative models are still problems in the optimization of
electromechanical systems in the Internet of Things.

The surplus force under the control of the conventional
radial basis function neural network controller and the
surplus force under the control of the radial basis function
neural network controller based on the electromechanical
system of the Internet of Things are shown in Figure 2. When
there is interference, the system will be affected to a certain
extent. Under the control of the conventional RBF neural
network controller, the system needs 0.18s to restore sta-
bility. When using the RBF neural network controller based
on the electromechanical system of the Internet of Things,
the system returns to a stable state after 0.09s, and the peak
time is reduced by 59% compared with the conventional RBF
neural network controller.

As shown in Figure 3, the RBF neural network controller
based on the electromechanical system of the Internet of
Things has faster convergence speed. The disturbance signal
makes the system oscillate greatly. Under the control of the

conventional RBF neural network controller, the excess
force increases to 2.5tf. The radial basis function neural
network controller based on the electromechanical system of
the Internet of Things can suppress the excess force to 0.75 tf.
Therefore, the RBF neural network controller based on the
electromechanical system of the Internet of Things has better
stability.

As shown in Figure 4, the intelligent electromechanical
system of the Internet of Things involves intelligent control,
task planning and decision-making, fault diagnosis, and
other aspects, many of which can be attributed to chal-
lenging complex optimization problems and can be solved
directly by the evolutionary algorithm on the basis of
modeling. As shown in Table 3, the problems related to the
judgment, logic, and decision-making of the electrome-
chanical system of the Internet of Things need to combine
evolutionary algorithm, neural network, fuzzy reasoning,
decision tree, and other technologies to realize the intel-
lectualization of the electromechanical system of the Internet
of Things.

As shown in Figure 5, reducing the energy consumption
of the electromechanical system of the Internet of Things,
reducing its environmental pollution, improving the recy-
clability of the electromechanical system, and realizing the
greening of the electromechanical system are the necessary
direction for the development of the electromechanical
system of the Internet of Things in the future. One of the core
problems in the development of electromechanical system
network is the scheduling of network resources. The use of
evolutionary algorithm can schedule network resources and,
to a certain extent, can help mechanical and electrical
systems to achieve better networking, but the requirements
of large scale, high concurrency, and real time for network
resource scheduling bring new challenges to the evolu-
tionary algorithm.

As shown in Table 4, the system current of the elec-
tromechanical system of the Internet of Things is closely
related to the operating variables such as temperature,
humidity, air flow, and air pressure. Therefore, the change of
the current of the electromechanical system of the Internet
of 'Things will affect the performance of the
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TaBLE 1: Interference signals after the system is running.

Item Internet of things Electromechanical Neural networks Fuzzy reasoning Decision tree
System 0.57 1.63 0.75 1.8 1.43
Mechanism 1.76 3.83 3.46 1.45 3.19
Design 4.22 4.49 4.62 3.46 3.27
Efficient 3.26 5.36 3.29 5.09 5.26
BIM 3.4 431 3.38 494 3.65
TaBLE 2: Goals and constraints in the electromechanical system of the Internet of Things.
Item Electromechanical System Mechanism Design Efficient BIM
Decision tree 0.59 0.16 1.58 1.45 0.15 0.55
Design 1.59 1.21 1.49 1.24 2.48 3.68
Maintain 4.03 3.73 2.83 3.18 2.58 2.9
Recycle 2.94 5.72 2.61 5.96 5.68 5.03
Current 1.11 3.09 2.98 2.08 3.36 4.62
Surplus force under the control of neural Surplus force under the control of neural
network controller-A network controller-B
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FIGURE 2: Surplus force under the control of neural network controller.

electromechanical system of the Internet of Things. In order
to achieve high efficiency and energy saving, it is necessary to
keep the operation conditions of the electromechanical
system of the Internet of Things at an appropriate level. As
an alternative energy solution with high energy density and
high operation efliciency, the electromechanical system of
the Internet of Things is favored by most applications. In
addition, the hydrogen IOT electromechanical system is an

environment-friendly energy conversion device, which
produces zero emissions in the process of propulsion.

As shown in Figure 6, multiangle unified modeling of
electromechanical systems in the Internet of Things to build
a unified modeling method of comprehensive bond graph
model, geometric modeling, and equation mechanism
model will be an effective means to realize the unified
modeling of electromechanical systems. This is because the
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FiGure 3: Convergence rate affected by the equation mechanism model.
Combat complex optimization problems
]
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=
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Number of virtual experiments
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—— Neural Networks Decision tree
FiGUure 4: Combat complex optimization problems.
TaBLE 3: Intelligentization of networked electromechanical systems.
Item Evolutionary algorithm Neural networks Fuzzy reasoning Decision tree Design
Maintain 1.89 3.75 1.21 1.2 4
Recycle 3.02 3.93 5.53 2.23 4.74
Current 498 4.69 431 4.48 44
Temperature 2.09 1.9 2.15 1.38 1.94
Humidity 2.07 4.37 4.1 1.79 2.97

bond graph model can support the automatic optimization
design well, but it is difficult to express the geometric di-
mension and assembly relationship of the system, so it is
necessary to add the geometric modeling of the system to
help the automatic design.

As shown in Table 5, although geometric modeling can
generate detailed models and strictly define the assembly
relationship between subsystems, its searchable design

space is also limited, so it is difficult to meet the re-
quirements of design automation as the only modeling
method. The equation mechanism model is the most ef-
ficient model expression form that can be seamlessly
connected with optimization algorithm. Therefore, the
multiangle unified modeling method, which integrates
multiple modeling methods, is a very potential research
direction.
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Electromechanical system of the Internet of things
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FIGURe 5: Electromechanical system of the Internet of Things.
TaBLE 4: Affect the performance of the IOT electromechanical system.
Item Pressure Efficient BIM Evolutionary algorithm Neural networks
Maintain 191 1.3 0.73 0.66 1.94
Recycle 2.42 2.66 1.75 2.95 1.77
Current 221 4.63 5.32 3.26 4.45
Temperature 1.68 4.32 117 4.86 2.77
Humidity 4.95 4.58 3.96 3.19 3.97
Flow 1.59 6.39 1.56 3.94 1.81

Means of unified modeling of electromechanical system
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FIGURE 6: Means of unified modeling of electromechanical system.

As shown in Figure 7, a series of equality constraints may
be involved in the process of electromechanical system
modeling. At present, the optimization methods for equality
constraints are very limited, and the common method is to
introduce a small positive number ¢ to transform one
equality constraint into two inequality constraints. However,
for the search space with higher dimensions, the value of € is
often difficult to determine.

According to the types of constraints, the appropriate
constraint processing mechanism is designed, as shown in
Table 6. A large amount of data will be generated in the
evolution process. Mining these data can be further used to
classify constraints. For example, through data perturbation

and statistical methods, constraints can be divided into three
difficulty types: feasibility difficulty, diversity difficulty, and
diversity difficulty. For each difficulty type of constraints, a
reasonable constraint processing mechanism is designed for
dynamic solution.

As shown in Figure 8, in the electromechanical system of
the Internet of Things, the constraints of some optimization
problems usually need to call simulation software, and the
calculation is expensive, while the traditional optimization
methods cannot effectively solve such problems. Therefore,
it is a feasible way to establish an alternative model for
constraints and study the constraint processing method
based on proxy models.
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TaBLE 5: Assembly relationship between subsystems.

Item Electromechanical System Mechanism Design Android
Neural networks 1.04 1.2 1.27 1.67 0.16
Fuzzy reasoning 3.02 2.51 1.89 3.75 1.21
Decision tree 4.44 3.17 3.02 3.93 5.53
Design 3.15 1.64 4.98 4.69 4.31
Maintain 2.12 4.64 2.09 1.9 2.15
Recycle 5.87 6.56 2.07 4.37 4.1

Modeling equation constraints of electromechanical systems

Landscape regression

virtual interaction

—— Recycle —O— humidity
Current —o— flow
temperature —@— pressure

FIGURE 7: Modeling equation constraints of electromechanical systems.

TaBLE 6: Appropriate constraint handling mechanism.

Item Recycle Current Temperature Humidity Flow Pressure
Stack 1.45 3.19 2.42 2.66 1.75 2.95
Linux 3.46 3.27 2.21 4.63 5.32 3.26
Android 5.09 5.26 1.68 4.32 1.17 4.86
Embedded device 4.94 3.65 4.95 4.58 3.96 3.19
DSP 6.05 4.5 1.59 6.39 1.56 3.94
SoC 1.93 5.16 522 3.24 1.9 3.34
7 1
6
5 4
-]
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!
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system mechanism design Efficient BIM Portable
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Constraints to establish alternative models
—— Current temperature —— humidity
— flow —— pressure Android
FIGURE 8: Constraints to establish alternative models.
As shown in Table 7, the optimal solutions of optimi-  can be easily solved by evolutionary algorithm. How to
zation problems are often concentrated on the uncon-  locate the constrained boundary quickly and effectively is a

strained Pareto front or the constrained boundary, which  direction worthy of further study.
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TABLE 7: Research on constrained boundary search.
Item Current Temperature Humidity Flow Pressure Android
System 1.85 0.85 1.06 0.72 1.72 0.04
Mechanism 2.5 291 3.48 2.2 2.37 2.66
Design 4.28 5.92 3.72 5.78 4.24 4.09
Efficient 2.59 1.68 2.48 3.74 1.77 5.16
BIM 2.43 2.79 217 3.77 1.72 3.74
Portable 1.84 2.53 1.58 2.32 4.51 6.55

Optimal design of electromechanical system
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Virtual Technology Project
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FIGURE 9: Optimal design of electromechanical system.
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FIGURE 10: Test problem set of multiobjective evolutionary algorithm.

As shown in Figure 9, the constrained multiobjective
optimization method for the optimization of the electro-
mechanical system of the Internet of Things usually con-
siders not only a single design objective but also multiple
conflicting design objectives in the actual design process.
Therefore, the optimization design of the electromechanical
system can often be described as a multiobjective optimi-
zation problem. In the research of automatic design of
electromechanical systems, the multiobjective evolutionary
algorithm has gradually become a common method to solve
the above multiobjective optimization problems. In

multiobjective evolutionary algorithms, different constraint
processing techniques are often used to solve multiobjective
optimization problems with constraints.

As shown in Figure 10, the test problem set used to
evaluate the constrained multiobjective evolutionary algo-
rithm is not only relatively small due to its difficulty but also
lacks the test problem set that can effectively test the per-
formance of the constrained multiobjective evolutionary
algorithm. The difficulty of each constraint type can be
adjusted freely, and the problem can be customized freely.
This allows you to comprehensively evaluate the
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performance of constrained multipurpose evolutionary al-
gorithms on a single difficulty level or multiple difficulty
levels. In the field of engineering optimization, most engi-
neering design problems need to evaluate the design ob-
jective function and constraint function related to design
variables through experiments or simulations. However,
there are many problems in these designs, such as the time-
consuming of single simulation, the time-consuming of
fitness evaluation, and the expensive of calculation, such as
the wing shape design and structure design.

5. Conclusions

At present, a typical solution to the optimization design of
mechanical and electrical products is the evolutionary al-
gorithm based on the alternative model. By using the al-
ternative model in the evolutionary algorithm, the
evaluation of the expensive objective function can be re-
duced, so as to reduce the computation time and cost of the
expensive evolutionary optimization problem. To sum up,
although some achievements have been made in the research
of multiobjective optimization algorithm, in the design
process of the actual electromechanical system, designers
should not only consider multiple design objectives but also
consider a lot of design constraints, design evaluation, and
calculation cost. Therefore, in order to better solve the
optimization design problem of the electromechanical sys-
tem of the Internet of Things, the optimal design method is
obtained. It will be a very meaningful work to further
strengthen the research of multiobjective optimization al-
gorithm with complex constraints.

The design automation method combining constrained
multiobjective evolutionary algorithm and knowledge ex-
traction will produce a lot of data in the process of opti-
mization design using evolutionary algorithm, which
contains a lot of implicit knowledge related to optimization
design problems. In the process of using evolutionary al-
gorithm for optimization design, effective knowledge can be
mined through data mining and knowledge extraction. On
the one hand, it helps designers better understand opti-
mization problems and simplify models of optimization
problems. On the other hand, the acquired knowledge can be
incorporated into evolutionary algorithms to further im-
prove the accuracy and efficiency of evolutionary algorithms.
As a common knowledge extraction method, collaborative
design and manufacturing has been widely used. Integrating
the collaborative design and manufacturing method into the
evolutionary algorithm not only improves the performance
of the algorithm but also can excavate the design knowledge
hidden in the evolutionary design process and even can
effectively transform and transfer the acquired knowledge to
other scenarios to solve new optimization design problems.

The classification and clustering method in collaborative
design and manufacturing can assist the multiobjective
evolutionary algorithm in group selection and new solution
generation to improve the search efficiency. Therefore,
building a set of automatic optimization design methods for
the Internet of Things electromechanical system by ratio-
nally integrating constrained multipurpose evolutionary

Mobile Information Systems

algorithms is the potential of research on the design auto-
mation of the Internet of Things electromechanical sys-
tem—development direction, extraction of evolutionary
algorithms, and design knowledge.
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